

40-Gbit/s D-type Flip-Flop and Multiplexer Circuits Using InP HEMT

T. Suzuki, H. Kano, Y. Nakasha, T. Takahashi, K. Imanishi, H. Ohnishi, and Y. Watanabe

Fujitsu Laboratories Ltd.

10-1 Morinosato-wakamiya, Atsugi, Kanagawa 243-0197, Japan

ABSTRACT

We developed a novel design technique for a D-type flip-flop (D-FF) circuit that is based on a small-signal-equivalent circuit approach. This technique provides the best condition to operate the D-FF at a high frequency. Using this technique, we fabricated a Master-Slave D-FF using a 0.15- μ m InP HEMT technology. We achieved 40-Gbit/s operation with clear-eye-waveform patterns and reduced jitter.

INTRODUCTION

The rapid growth of the Internet and the emergence of web-based multimedia communication have created the need for the backbone optical networks to have a much larger transmitting capacity. Therefore, the development of a 40-Gbit/s time-division multiplexing transmission (TDMA) system is ongoing [1]. The D-type flip-flop (D-FF) is one of the key digital circuits for realizing a TDMA system. Several D-FFs have been proposed, and their performance has been reported to be good [2-3]. However, it has not been clear how to go about finding the optimal condition that provides the best performance. Therefore, we developed a design technique for a D-FF that is based on a small-signal-equivalent circuit approach. We demonstrated its effectiveness by fabricating a D-FF and MUX IC using a 0.15- μ m InP HEMT.

CIRCUIT DESIGN TECHNIQUE

A source-coupled FET logic (SCFL) type D-FF circuit consists of two D-latches, as shown in Fig. 1. The switching speed of this circuit can become more than 40 Gbit/s by optimizing the gate-width size of the FET.

Figure 2 shows the simulated output waveform of a D-FF. The data is a pseudo random bit sequence (PRBS) with 2^7-1 at 40 Gbit/s. The waveform of a conventional D-FF with the same gate-width has an upstairs pattern near the high state (Fig. 2(a)).

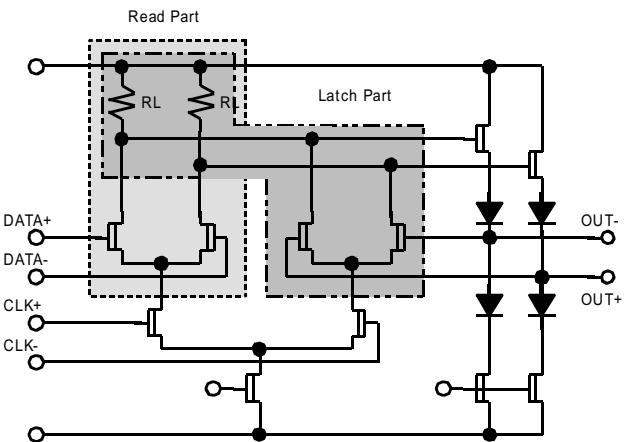
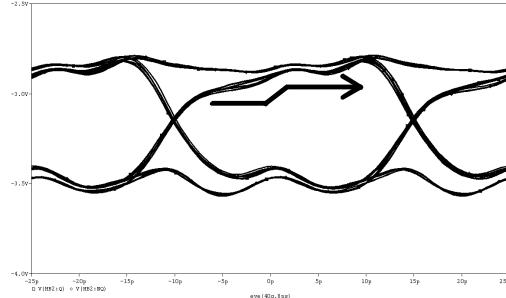
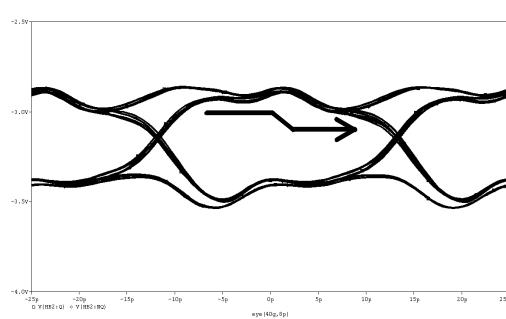
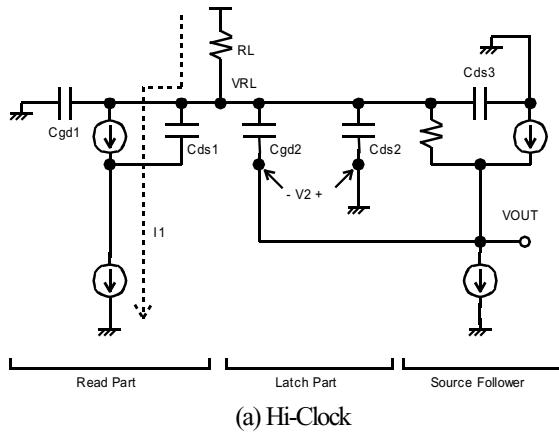
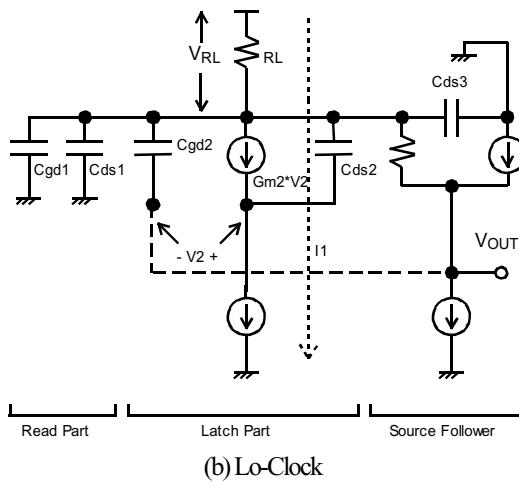




Fig. 1 Schematic of D-latch

(a) Conventional



(b) A half-size of the gate-widths for latch


Fig. 2 Simulated results of output waveform of a D-FF

However, when we apply a half-size of the gate-widths to the latch part, the waveform becomes a downstairs shape (Fig. 2(b)). To find the optimum relationship of the gate-widths of the FET between the read part and latch parts, we performed a small-signal-equivalent circuit analysis. To substitute small-signal conditions for large-signal responses, we divided the problem into two clock levels.

Figure 3 shows the small-signal-equivalent circuit of the D-latch. Variations of voltage at OUT (V_{OUT}) will be nearly equal to that of voltage at the node of R_L (V_{RL}) when we neglect the voltage losses of the source followers. To simplify the analysis, we implemented our small-signal analysis with V_{RL} .

(a) Hi-Clock

(b) Lo-Clock

Fig. 3 Small-signal-equivalent circuit of D-latch

1) Hi-clock level (Fig. 3(a))

When the clock becomes hi-level, current I_1 changes its path toward the read part, and V_{RL} is changed. The CR time constant of V_{RL} (τ_H) determines the switching speed of the D-latch, and is

expressed as follows;

$$\tau_H = R_L (C_{gd1} + C_{ds1} + 2C_{gd2} + C_{ds2} + C_{gd3}) . \quad (1)$$

The capacitance C_{gd2} has a factor of two due to positive feedback from the latch-part. V_{RL} is given by;

$$V_{RL}(t) = R_L I_1 (1 - \exp(-t / \tau_H)) . \quad (2)$$

As shown in Equation (2), although it is preferable that τ_H is small, we cannot reduce the gate-width of FETs in the read part since the voltage gain needs to be more than one. The gate-widths of the source-follower cannot be reduced either, since it has to maintain driving force capabilities for the circuits that follow.

2) Lo-clock level (Fig. 3(b))

When the clock becomes lo-level, current I_1 changes its path toward the latch part. Also, V_{RL} changes from that of when the clock is hi-level (V_α). If V_α is equal to $R_L I_1$, V_{RL} is not changed because the data signal is maintained at the latch part. In such a condition, V_{RL} are given by,

$$V_{RL} = R_L I_1 . \quad (3)$$

However, V_α is not equal to $R_L I_1$; V_{RL} is changed from V_α .

The CR time constants of V_{RL} (τ_L) and V_{RL} are expressed as:

$$\tau_L = \frac{R_L}{1 - G_{m2}R_L} (C_{gd1} + C_{ds1} + 2C_{gd2} + C_{ds2} + C_{gd3}) . \quad (4)$$

$$V_{RL}(t) = V_\alpha \exp(-t / \tau_L) \quad (5)$$

Equation (4) includes a factor of G_{m2} due to positive feedback from the latch-part. When the $G_{m2}R_L$ is larger than one, V_{RL} grow large rapidly to $R_L I_1$. On the other hand, when $G_{m2}R_L$ is smaller than one, V_{RL} becomes smaller than V_α . This indicates that the latch part cannot maintain the data.

Figure 4 shows relationships between V_H , V_L , and the gate-width ratio of the latch part to the read part. Here, V_H and V_L are normalized V_{RL} by $R_L I_1$. V_H is the value when the clock level is high, V_L is that of when clock level is low. In our calculations, we defined the V_H and V_L as values at 7 psec that were derived from the cutoff-frequency (f_T) of our InP HEMT. This graph indicates that the conventional D-FF with a gate-width ratio of one, has an upstairs shaped waveform because V_H is smaller than V_L . As for the case of a small sized FETs used for the latch, the waveform had a downstairs shape.

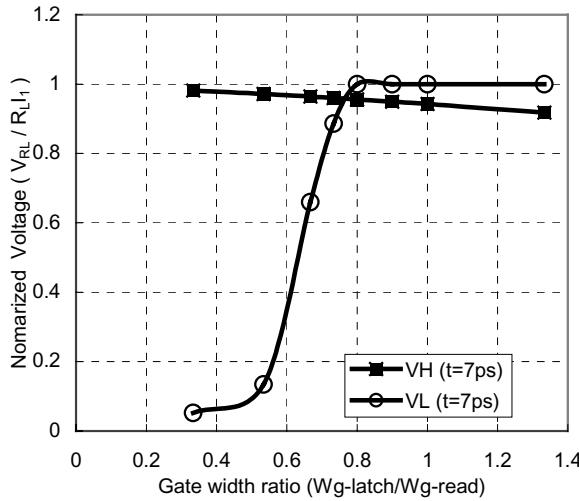


Fig. 4 Calculated voltage of the D-latch

To improve the waveform into an ideal rectangular shape, it is necessary that V_H be equal to V_L . From the figure and the above discussion, we can find the optimum gate-width ratio that provides the best performance for a D-FF. We obtained the ratio of 0.8 for our FETs. To verify the accuracy of our design method, we designed and fabricated a D-FF circuit with our 0.15- μ m InP HEMT technology. The gate-width ratio was set to be 0.8.

EXPERIMENTAL RESULTS

Figure 5 shows a block diagram of the D-FF and MUX ICs.

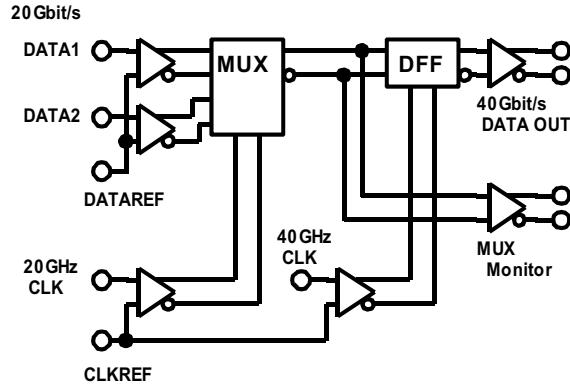


Fig. 5 Circuit block diagram

There are a single data input and a differential data output that are connected to a 50-ohm termination. In front of the MUX and D-FF cores, data and clock buffers are located to convert the single-phase

signal to a differential signal. A pair of two-channel input data was multiplexed at the MUX. The multiplexed data was clocked at the D-FF circuit. The supply voltage was -5.2 V. The power consumption was 2.5 W. A micrograph of the chips is shown in Fig. 6. The total chip area was 2.4×1.9 mm².

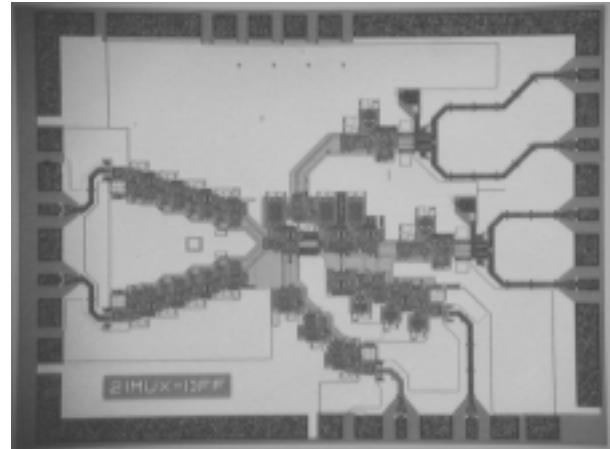
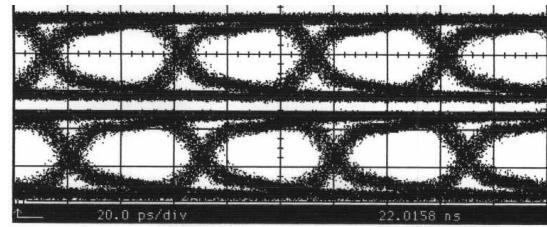
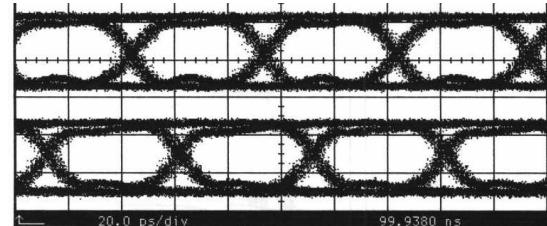




Fig. 6 Micrograph of the ICs

Figure 7 shows the output eye patterns at 20 Gbit/s. The conventional D-FF had steps and it could not be operated at 40 Gbit/s. On the other hand, the improved D-FF had a very clear waveform.

(a) Conventional D-FF

(b) Improved D-FF

Fig. 7 Output waveform at 20 Gbit/s

Figure 8 shows the output eye waveform of the MUX at 40 Gbit/s. Figure 9 shows those of the improved D-FF at 40 Gbit/s. The output data of the D-FF circuits had decreased jitter and very clear eye waveform. This result indicates that the small-signal-equivalent circuit analysis was effective.

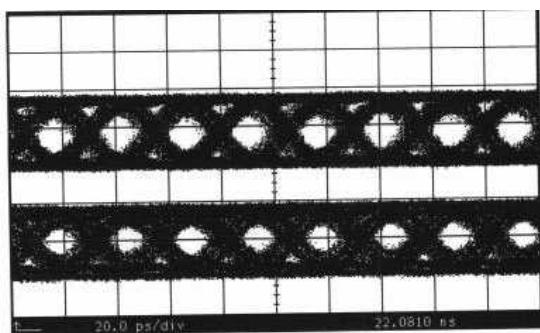


Fig. 8 Output waveform of MUX at 40 Gbit/s

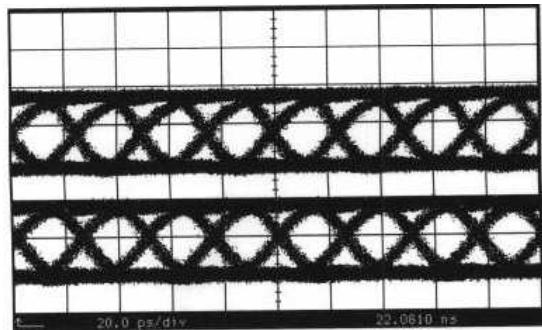


Fig. 9 Output waveform of improved D-FF at 40 Gbit/s

CONCLUSION

We developed a novel small-signal design technique to improve the waveform of D-FF circuits operated at high frequencies. We have applied the technique to D-FF and MUX circuits using a 0.15- μ m InP HEMT. This IC operated at 40 Gbit/s, and the eye waveform was very clear. Our design technique is very convenient and useful for designing any type of D-FF circuit.

REFERENCES

[1] Y.Miyamoto, M.Yoneyama, T.Otsuji, K.Yonenaga, and N.Shimizu, "40-Gbit/s TDM Transmission Technologies Based on Ultra-High-Speed IC's", IEEE JOURNAL OF SOLID-STATE

CIRCUITS, pp. 1246-1253, 1999

[2] T. Otsuji, M. Yoneyama, K. Murata, and E. Sano, "A Super-Dynamic Flip-Flop Circuit for Broadband Applications up to 24 Gbit/s Utilizing Production-Level 0.2- μ m GaAs MESFETs", IEEE GaAs IC Symposium 1996

[3] Y. Kuriyama, T. Sugiyama, S. Hongo, J. Akagi, K. Tsuda, N. Iizuka, and M. Obara, "A 40 GHz D-type Flip-flop using AlGaAs/GaAs HBT's", IEEE GaAs IC Symposium 1994